基于状态空间方法的时间序列分析
2021-10-10
| 2023-8-6
0  |  阅读时长 0 分钟
type
status
date
slug
summary
tags
category
icon
password
Property
 
 
模型意义
状态空间模型起源于平稳时间序列分析。当用于非平稳时间序列分析时需要将非平稳时间序列分解为随机游走成分(趋势)和弱平稳成分两个部分分别建模。 含有随机游走成分的时间序列又称积分时间序列,因为随机游走成分是弱平稳成分的和或积分。当一个向量值积分序列中的某些序列的线性组合变成弱平稳时就称这些序列构成了协调积分(cointegrated)过程。 非平稳时间序列的线性组合可能产生平稳时间序列这一思想可以追溯到回归分析,Granger提出的协调积分概念使这一思想得到了科学的论证。 Aoki和Cochrane等人的研究表明:很多非平稳多变量时间序列中的随机游走成分比以前人们认为的要小得多,有时甚至完全消失。
状态空间模型的建立和预测的步骤
为了避免由于状态空间模型的不可控制性而导致的错误的分解形式,当对一个单整时间序列建立状态空间分解模型并进行预测,应按下面的步骤执行:
(1) 对相关的时间序列进行季节调整,并将季节要素序列外推;
(2) 对季节调整后的时间序列进行单位根检验,确定单整阶数,然后在ARIMA过程中选择最接近的模型;
(3) 求出ARIMA模型的系数;
(4) 用ARIMA模型的系数准确表示正规状态空间模型,检验状态空间模型的可控制性;
(5) 利用Kalman滤波公式估计状态向量,并对时间序列进行预测。
(6) 把外推的季节要素与相应的预测值合并,就得到经济时间序列的预测结果
  • Statsmodels
  • Auto ARIMA矢量自动回归
    目录