🐬机器翻译与数据集
2021-12-4
| 2023-8-7
0  |  阅读时长 0 分钟
type
status
date
slug
summary
tags
category
icon
password
Property

 
语言模型是自然语言处理的关键, 而机器翻译是语言模型最成功的基准测试。 因为机器翻译正是将输入序列转换成输出序列的序列转换模型(sequence transduction)的核心问题。 序列转换模型在各类现代人工智能应用中发挥着至关重要的作用, 为此,这里将介绍机器翻译问题及需要使用的数据集。
机器翻译(machine translation)指的是将序列从一种语言自动翻译成另一种语言。 事实上,这个研究领域可以追溯到数字计算机发明后不久的20世纪40年代, 特别是在第二次世界大战中使用计算机破解语言编码。 几十年来,在使用神经网络进行端到端学习的兴起之前, 统计学方法在这一领域一直占据主导地位。 因为统计机器翻译(statisticalmachine translation)涉及了 翻译模型和语言模型等组成部分的统计分析, 因此基于神经网络的方法通常被称为 神经机器翻译(neuralmachine translation), 用于将两种翻译模型区分开来。
这里关注点是神经网络机器翻译方法,强调的是端到端的学习。 与单一语言的语言模型问题存在不同, 机器翻译的数据集是由源语言和目标语言的文本序列对组成的。 因此需要一种完全不同的方法来预处理机器翻译数据集, 而不是复用语言模型的预处理程序。
 

下载和预处理数据集

首先,下载一个由Tatoeba项目的双语句子对组成的“英-法”数据集,数据集中的每一行都是制表符分隔的文本序列对,序列对由英文文本序列和翻译后的法语文本序列组成。 请注意,每个文本序列可以是一个句子, 也可以是包含多个句子的一个段落。 在这个将英语翻译成法语的机器翻译问题中, 英语是源语言(source language), 法语是目标语言(target language)
 

词元化

与字符级词元化不同,机器翻译中更喜欢单词级词元化 (最先进的模型可能使用更高级的词元化技术)。 下面的tokenize_nmt函数对前num_examples个文本序列对进行词元, 其中每个词元要么是一个词,要么是一个标点符号。 此函数返回两个词元列表:sourcetarget: source[i]是源语言(这里是英语)第 个文本序列的词元表, target[i]是目标语言(这里是法语)第 个文本序列的词元列表。
绘制每个文本序列所包含的词元数量的直方图。 在这个简单的“英-法”数据集中,大多数文本序列的词元数量少于20个。
 
notion image

词表

由于机器翻译数据集由语言对组成, 因此可以分别为源语言和目标语言构建两个词表。 使用单词级词元化时,词表大小将明显大于使用字符级词元化时的词表大小。 为了缓解这一问题,这里我们将出现次数少于2次的低频率词元视为相同的未知(“<unk>”)词元。 除此之外,还指定了额外的特定词元, 例如在小批量时用于将序列填充到相同长度的填充词元(“<pad>”), 以及序列的开始词元(“<bos>”)和结束词元(“<eos>”)。 这些特殊词元在自然语言处理任务中比较常用。
 

加载数据集

语言模型中的序列样本都有一个固定的长度, 无论这个样本是一个句子的一部分还是跨越了多个句子的一个片断。 这个固定长度是由 num_steps(时间步数或词元数量)参数指定的。 在机器翻译中,每个样本都是由源和目标组成的文本序列对, 其中的每个文本序列可能具有不同的长度。
为了提高计算效率,可以通过截断(truncation)填充(padding)方式实现一次只处理一个小批量的文本序列。 假设同一个小批量中的每个序列都应该具有相同的长度num_steps, 那么如果文本序列的词元数目少于num_steps时, 我们将继续在其末尾添加特定的“<pad>”词元, 直到其长度达到num_steps; 反之,我们将截断文本序列时,只取其前num_steps 个词元, 并且丢弃剩余的词元。这样,每个文本序列将具有相同的长度, 以便以相同形状的小批量进行加载。
 
如前所述,下面的truncate_pad函数将(截断或填充文本序列)。
现在定义一个函数,可以将文本序列转换成小批量数据集用于训练。 将特定的“<eos>”词元添加到所有序列的末尾, 用于表示序列的结束。 当模型通过一个词元接一个词元地生成序列进行预测时, 生成的“<eos>”词元说明完成了序列输出工作。 此外,还记录了每个文本序列的长度, 统计长度时排除了填充词元, 在稍后将要介绍的一些模型会需要这个长度信息。
 

训练模型

定义load_data_nmt函数来返回数据迭代器, 以及源语言和目标语言的两种词表
下面读出“英语-法语”数据集中的第一个小批量数据
 
 

代码

  • PyTorch
  • 双向循环神经网络编码器-解码器架构
    目录