🐳LeNet
2021-11-30
| 2023-8-6
0  |  阅读时长 0 分钟
type
status
date
slug
summary
tags
category
icon
password
Property
 
 
LeNet是最早发布的卷积神经网络之一,因其在计算机视觉任务中的高效性能而受到广泛关注。这个模型是由贝尔实验室的研究员Yann LeCun在1989年提出的(并以其命名),目的是识别图像中的手写数字。 当时,Yann LeCun发表了第一篇通过反向传播成功训练卷积神经网络的研究,这项工作代表了十多年来神经网络研究开发的成果。
当时,LeNet取得了与支持向量机(support vector machines)性能相媲美的成果,成为监督学习的主流方法。 LeNet被广泛用于自动取款机(ATM)机中,帮助识别处理支票的数字。 时至今日,一些自动取款机仍在运行Yann LeCun和他的同事Leon Bottou在上世纪90年代写的代码呢!
总体来看,LeNet(LeNet-5)由两个部分组成:
  • 卷积编码器:由两个卷积层组成;
  • 全连接层密集块:由三个全连接层组成
该架构如下:
notion image
每个卷积块中的基本单元是一个卷积层、一个sigmoid激活函数和平均汇聚层。请注意,虽然ReLU和最大汇聚层更有效,但它们在20世纪90年代还没有出现。每个卷积层使用5×5卷积核和一个sigmoid激活函数。这些层将输入映射到多个二维特征输出,通常同时增加通道的数量。第一卷积层有6个输出通道,而第二个卷积层有16个输出通道。每个2×2池操作(步骤2)通过空间下采样将维数减少4倍。卷积的输出形状由批量大小、通道数、高度、宽度决定。
为了将卷积块的输出传递给稠密块,我们必须在小批量中展平每个样本。换言之,我们将这个四维输入转换成全连接层所期望的二维输入。这里的二维表示的第一个维度索引小批量中的样本,第二个维度给出每个样本的平面向量表示。LeNet的稠密块有三个全连接层,分别有120、84和10个输出。因为我们在执行分类任务,所以输出层的10维对应于最后输出结果的数量。
 
这里对原始模型做了一点小改动,去掉了最后一层的高斯激活。除此之外,这个网络与最初的LeNet-5一致
notion image
 
将一个大小为 28×28的单通道(黑白)图像通过LeNet,通过在每一层打印输出的形状,可以检查模型,以确保其操作与我们期望的一致
notion image
 
 
 
 
  • PyTorch
  • 图像增广AlexNet 深度卷积神经网络
    目录