高斯混合模型GMM
2021-9-30
| 2023-8-6
0  |  阅读时长 0 分钟
type
status
date
slug
summary
tags
category
icon
password
Property
 
高斯混合模型(Gaussian Mixed Model,GMM)也是一种常见的聚类算法,与K均值算法类似,同样使用了EM算法进行迭代计算。高斯混合模型假设每个簇的数据都是符合高斯分布(正态分布)的,当前数据呈现的分布就是各个簇的高斯分布叠加在一起的结果。
 
 
notion image
notion image
第一张图是一个数据分布的样例,如果只用一个高斯分布来拟合图中的数据,图中所示的椭圆即为高斯分布的二倍标准差所对应的椭圆。直观来说,图中的数据明显分为两簇,因此只用一个高斯分布来拟和是不太合理的,需要推广到用多个高斯分布的叠加来对数据进行拟合。第二张图是用两个高斯分布的叠加来拟合得到的结果。这就引出了高斯混合模型,即用多个高斯分布函数的线形组合来对数据分布进行拟合。理论上,高斯混合模型可以拟合出任意类型的分布。
 
 
高斯混合模型的核心思想是,假设数据可以看作从多个高斯分布中生成出来 的。在该假设下,每个单独的分模型都是标准高斯模型,其均值 和方差 是待估计的参数。此外,每个分模型都还有一个参数 ,可以理解为权重或生成数据的概率。高斯混合模型的公式为:
通常并不能直接得到高斯混合模型的参数,而是观察到了一系列数据点,给出一个类别的数量K后,希望求得最佳的K个高斯分模型。因此,高斯混合模型的计算,便成了最佳的均值,方差、权重的寻找,这类问题通常通过 最大似然估计来求解。遗憾的是,此问题中直接使用最大似然估计,得到的是一 个复杂的非凸函数,目标函数是和的对数,难以展开和对其求偏导。
在这种情况下,可以用EM算法。EM算法是在最大化目标函数时,先固定一个变量使整体函数变为凸优化函数,求导得到最值,然后利用最优参数更新被固定的变量,进入下一个循环。具体到高斯混合模型的求解,EM算法的迭代过程如下。
首先,初始随机选择各参数的值。然后,重复下述两步,直到收敛。
  • E步骤。根据当前的参数,计算每个点由某个分模型生成的概率。
  • M步骤。使用E步骤估计出的概率,来改进每个分模型的均值,方差和权重。
高斯混合模型是一个生成式模型。可以这样理解数据的生成过程,假设一个最简单的情况,即只有两个一维标准高斯分布的分模型N(0,1)和N(5,1),其权重分别为0.7和0.3。那么,在生成第一个数据点时,先按照权重的比例,随机选择一个分布,比如选择第一个高斯分布,接着从N(0,1)中生成一个点,如−0.5,便是第一个数据点。在生成第二个数据点时,随机选择到第二个高斯分布N(5,1),生成了第二个点4.7。如此循环执行,便生成出了所有的数据点。
也就是说,我们并不知道最佳的K个高斯分布的各自3个参数,也不知道每个 数据点究竟是哪个高斯分布生成的。所以每次循环时,先固定当前的高斯分布不 变,获得每个数据点由各个高斯分布生成的概率。然后固定该生成概率不变,根据数据点和生成概率,获得一个组更佳的高斯分布。循环往复,直到参数的不再变化,或者变化非常小时,便得到了比较合理的一组高斯分布。
 
 
高斯混合模型与K均值算法的相同点是:
  • 它们都是可用于聚类的算法;
  • 都需要指定K值;
  • 都是使用EM算法来求解;
  • 都往往只能收敛于局部最优。
而它相比于K 均值算法的优点是,可以给出一个样本属于某类的概率是多少;不仅仅可以用于聚类,还可以用于概率密度的估计;并且可以用于生成新的样本点。
notion image
notion image
  • Scikit-Learn
  • K-Means聚类模糊C均值聚类
    目录